Search results for "Hydrogenated amorphous silicon"

showing 6 items of 6 documents

Plasmonic effects of ultra-thin Mo films on hydrogenated amorphous Si photovoltaic cells

2012

We report on the improvement of short circuit current (JSC), fill factor (FF), and open circuit resistance (ROC) in hydrogenated amorphous silicon (a-Si:H) photovoltaic cells with a p-type/intrinsic/n-type structure, achieved by the addition of an ultra-thin molybdenum film between the p-type film and the transparent conductive oxide/glass substrate. For suitable conditions, improvements of ≈10% in average internal quantum efficiency and up to 5%–10% under standard illumination in JSC, FF, and ROC are observed. These are attributed to the excitation of surface plasmon polariton modes of the a-Si:H/Mo interface.

Amorphous siliconMaterials sciencePhysics and Astronomy (miscellaneous)Siliconbusiness.industrySurface plasmonchemistry.chemical_elementhydrogenated amorphous silicon (a-Si:H) solar cellsSubstrate (electronics)Amorphous solidchemistry.chemical_compoundchemistrysurface plasmon polaritonOptoelectronicsbusinessShort circuitPlasmonTransparent conducting film
researchProduct

Plasmonic modes in molybdenum ultra-thin films suitable for hydrogenated amorphous silicon thin film solar cells

2014

We have recently demonstrated that molybdenum ultra-thin films interposed between hydrogenated amorphous silicon (a-Si:H) and SnO2:F transparent conductive oxide (TCO) in thin film solar cells show light trapping effects which enhance the solar cells performances. The effect of this improvement may be attributed to surface plasmon polariton (SPP) modes excited at the molybdenum interface by the solar radiation. In this paper we show direct evidence of such SPP modes in the case of the molybdenum/air interface by using the attenuated total reflection (ATR) technique, pioneered by Kretschmann, and we evaluate the dielectric constant of molybdenum at 660 nm. (C) 2013 The Authors. Published by …

Amorphous siliconMaterials sciencebusiness.industrychemistry.chemical_elementThin Film PhotovoltaicsThin Film PhotovoltaicPlasmonicSurface plasmon polaritonThin Film Photovoltaics;Light Trapping; Plasmonics;Hydrogenated Amorphous Siliconchemistry.chemical_compoundHydrogenated Amorphous SiliconEnergy(all)chemistryMolybdenumAttenuated total reflectionOptoelectronicsPlasmonicsPlasmonic solar cellThin filmbusinessPlasmonLight TrappingTransparent conducting film
researchProduct

Influence of the electro-optical properties of an a-Si:H single layer on the performances of a pin solar cell

2012

We analyze the results of an extensive characterization study involving electrical and optical measurements carried out on hydrogenated amorphous silicon (α-Si:H) thin film materials fabricated under a wide range of deposition conditions. By adjusting the synthesis parameters, we evidenced how conductivity, activation energy, electrical transport and optical absorption of an α-Si:H layer can be modified and optimized. We analyzed the activation energy and the pre-exponential factor of the dark conductivity by varying the dopant-to-silane gas flow ratio. Optical measurements allowed to extract the absorption spectra and the optical bandgap. Additionally, we report on the temperature dependen…

Amorphous siliconThin film materialThin film solar cell Activation energySingle junctionConductivitySettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materialaw.inventionchemistry.chemical_compoundElectric conductivitylawMaterials ChemistryThin filmAbsorption (electromagnetic radiation)Preexponential factorGas-flow ratioMetals and AlloysSurfaces and InterfacesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsTemperature dependenceHydrogenated amorphous siliconOptoelectronicsElectric propertieQuantum efficiencyHydrogenationOptical data processingDeposition conditionSiliconMaterials scienceActivation energyQuantum efficiencySynthesis conditionVapor deposition SiliconOpticsSolar cellActivation energyDark conductivityCharacterization studieElectromagnetic wave absorptionThin filmDepositionElectrooptical propertieThin film solar cellConductivitybusiness.industryEnergy conversion efficiencySolar cellAmorphous siliconMeyer-Neldel ruleOptical propertieOptical measurementelectro-optical propertiesNanostructured materialSilicon; Solar cell; electro-optical propertiesElectrical transportchemistrySynthesis parameterOptical variables measurementSingle layerConversion efficiencybusinessOptical gap
researchProduct

Role of the Back Metal-Semiconductor Contact on the Performances of a-Si:H Solar Cells

2011

We have investigated the role of the metal-semiconductor back contact on the performances of thin film modules consisting of single junction a-Si:H photovoltaic (PV) cells deposited with p-i-n configuration. We find that an adequate choice of the back contact helps reducing the barrier height of the junction improving the contact conductivity. For this purpose Mo has shown to be effective. Moreover we find that Mo, as refractory material, has additional beneficial effects reducing the formation of defects leading to the decrease of recombination losses. We have then fabricated a PV module on flexible substrate for indoor energy harvesting applications using Mo as back contact. An efficiency…

Materials scienceThin-film solar cells hydrogenated amorphous silicon (a-Si:H)transparent conductive oxidebusiness.industryOptoelectronicsThin film solar cellbusinessMetal semiconductorTransparent conducting film
researchProduct

Anomalous and normal Hall effect in hydrogenated amorphous Si prepared by plasma enhanced chemical vapor deposition

2010

The double sign anomaly of the Hall coefficient has been studied in p -doped and n -doped hydrogenated amorphous silicon grown by plasma enhanced chemical vapor deposition and annealed up to 500 °C. Dark conductivity as a function of temperature has been measured, pointing out a conduction mechanism mostly through the extended states. Anomalous Hall effect has been observed only in the as-deposited n -doped film, disappearing after annealing at 500 °C, while p -doped samples exhibit normal Hall effect. When Hall anomaly is present, a larger optical band gap and a greater Raman peak associated with Si-H bond are measured in comparison with the cases of normal Hall effect. The Hall anomaly wi…

inorganic chemicalsAmorphous siliconMaterials scienceSiliconAnnealing (metallurgy)Band gapeducationGeneral Physics and Astronomychemistry.chemical_elementSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della MateriaCondensed Matter::Materials Sciencechemistry.chemical_compoundsymbols.namesakePlasma-enhanced chemical vapor depositionHall effectSi-H bondingElectrical measurementsCondensed matter physicsHall effecttechnology industry and agricultureoptical gapCondensed Matter::Mesoscopic Systems and Quantum Hall EffectAmorphous solidchemistryHydrogenated amorphous siliconsymbolsdark conductivityRaman spectroscopypsychological phenomena and processes
researchProduct

Simulation studies of electronic transport in a-Si:H thin film solar cells

2009

The thin film solar cells in Hydrogenated Amorphous Silicon (a-Si:H) are attractive for cheaper production and used in ultra low cost, high volume applications but have a relatively lower electronic performance. These limitations are mainly due to properties of the a-Si:H and relies on the production technique. In this study we investigate the physical mechanisms which are on the basis of the electronic transport and their relation with the technological processes. The transport-simulation computer program ATLAS (Silvaco) has been used to examine the role of the mid gap defect density in determining the performance of a-Si:H p-i-n homojunction solar cell.

thin film solar cells Hydrogenated Amorphous Silicon a-Si:H simulation pin diode electronic transport
researchProduct